SECTION I: FUNCTIONAL ANALYSIS. Metric Spaces. Topological Vector Spaces. Hilbert Spaces. The Hahn-Banach Theorems and the Weak Topologies. Topics on Linear Operators. Spectral Analysis, a General Approach in Normed spaces. Basic Results on Measure and Integration.
The Lebesgue Measure in R n. Other Topics in Measure and Integration. Distributions. The Lebesgue and Sobolev Spaces. SECTION II: CALCULUS OF VARIATIONS, CONVEX ANALYSIS AND RESTRICTED OPTIMIZATION. Basic Topics on the Calculus of Variations. More topics on the Calculus of Variations. Convex Analysis and Duality Theory.
Constrained Variational Optimization. On Central Fields in the Calculus of Variations. SECTION III: APPLICATIONS TO MODELS IN PHYSICS AND ENGINEERING. Global Existence Results and Duality for Non-Linear Models of Plates and Shells. A Primal Dual Formulation and a Multi-Duality Principle for a Non-Linear Model of Plates. On Duality Principles for One and Three-Dimensional Non-Linear Models in Elasticity. A Primal Dual Variational Formulation Suitable for a Large Class of Non-Convex Problems in Optimization. A Duality Principle and Concerning Computational Method for a Class of Optimal Design Problems in Elasticity.
Existence and Duality Principles for the Ginzburg-Landau System in Superconductivity. Existence of Solution for an Optimal Control Problem Associated to the Ginzburg-Landau System in Superconductivity. Duality for a Semi-Linear Model in Micro-Magnetism. About Numerical Methods for Ordinary and Partial Differential Equations. On the Numerical Solution of First Order Ordinary Differential Equation Systems. On the Generalized Method of Lines and its Proximal Explicit and Hyper-Finite Difference Approaches. On the Generalized Method of Lines Applied to the Time Independent Incompressible Navier-Stokes System. A Numerical Method for an Inverse Optimization Problem through the Generalized Method of Lines.
References.