Accelerated Life Testing of One-Shot Devices : Data Collection and Analysis
Accelerated Life Testing of One-Shot Devices : Data Collection and Analysis
Click to enlarge
Author(s): Balakrishnan, N.
Balakrishnan, Narayanaswamy
ISBN No.: 9781119664031
Pages: 240
Year: 202102
Format: E-Book
Price: $ 184.85
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface xi About the Companion Website xiii 1 One-Shot Device Testing Data 1 1.1 Brief Overview 1 1.2 One-Shot Devices 1 1.3 Accelerated Life-Tests 3 1.4 Examples in Reliability and Survival Studies 4 1.4.1 Electro-Explosive Devices Data 4 1.4.


2 Glass Capacitors Data 5 1.4.3 Solder Joints Data 5 1.4.4 Grease-Based Magnetorheological Fluids Data 6 1.4.5 Mice Tumor Toxicological Data 7 1.4.


6 ED01 Experiment Data 7 1.4.7 Serial Sacrifice Data 7 1.5 Recent Developments in One-Shot Device Testing Analysis 10 2 Likelihood Inference 13 2.1 Brief Overview 13 2.2 Under CSALTs and Different Lifetime Distributions 13 2.3 EM-Algorithm 14 2.3.


1 Exponential Distribution 16 2.3.2 Gamma Distribution 18 2.3.3 Weibull Distribution 21 2.4 Interval Estimation 26 2.4.1 Asymptotic Confidence Intervals 26 2.


4.2 Approximate Confidence Intervals 28 2.5 Simulation Studies 30 2.6 Case Studies with R Codes 41 3 Bayesian Inference 47 3.1 Brief Overview 47 3.2 Bayesian Framework 47 3.3 Choice of Priors 49 3.3.


1 Laplace Prior 49 3.3.2 Normal Prior 49 3.3.3 Beta Prior 50 3.4 Simulation Studies 51 3.5 Case Study with R Codes 59 4 Model Mis-Specification Analysis and Model Selection 65 4.1 Brief Overview 65 4.


2 Model Mis-Specification Analysis 65 4.3 Model Selection 66 4.3.1 Akaike Information Criterion 66 4.3.2 Bayesian Information Criterion 67 4.3.3 Distance-Based Test Statistic 68 4.


3.4 Parametric Bootstrap Procedure for Testing Goodness-of-Fit 70 4.4 Simulation Studies 70 4.5 Case Study with R Codes 76 5 Robust Inference 79 5.1 Brief Overview 79 5.2 Weighted Minimum Density Power Divergence Estimators 79 5.3 Asymptotic Distributions 81 5.4 RobustWald-type Tests 82 5.


5 Influence Function 83 5.6 Simulation Studies 85 5.7 Case Study with R Codes 91 6 Semi-Parametric Models and Inference 95 6.1 Brief Overview 95 6.2 Proportional Hazards Models 95 6.3 Likelihood Inference 97 6.4 Test of Proportional Hazard Rates 99 6.5 Simulation Studies 100 6.


6 Case Studies with R Codes 102 7 Optimal Design of Tests 105 7.1 Brief Overview 105 7.2 Optimal Design of CSALTs 105 7.3 Optimal Design with Budget Constraints 106 7.3.1 Subject to Specified Budget and Termination Time 107 7.3.2 Subject to Standard Deviation and Termination Time 107 7.


4 Case Studies with R Codes 108 7.5 Sensitivity of Optimal Designs 113 8 Design of Simple Step-Stress Accelerated Life-Tests 119 8.1 Brief Overview 119 8.2 One-Shot Device Testing Data Under Simple SSALTs 119 8.3 Asymptotic Variance 121 8.3.1 Exponential Distribution 121 8.3.


2 Weibull Distribution 122 8.3.3 With a Known Shape Parameter 2 124 8.3.4 With a Known Parameter About Stress Level 1 125 8.4 Optimal Design of Simple SSALT 126 8.5 Case Studies with R Codes 128 8.5.


1 SSALT for Exponential Distribution 128 8.5.2 SSALT forWeibull Distribution 131 9 Competing-Risks Models 141 9.1 Brief Overview 141 9.2 One-Shot Device Testing Data with Competing Risks 141 9.3 Likelihood Estimation for Exponential Distribution 143 9.3.1 Without Masked Failure Modes 144 9.


3.2 With Masked Failure Modes 147 9.4 Likelihood Estimation forWeibull Distribution 149 9.5 Bayesian Estimation 155 9.5.1 Without Masked Failure Modes 155 9.5.2 Laplace Prior 156 9.


5.3 Normal Prior 157 9.5.4 Dirichlet Prior 157 9.5.5 With Masked Failure Modes 158 9.6 Simulation Studies 159 9.7 Case Study with R Codes 165 10 One-Shot Devices with Dependent Components 173 10.


1 Brief Overview 173 10.2 Test Data with Dependent Components 173 10.3 Copula Models 174 10.3.1 Family of Archimedean Copulas 175 10.3.2 Gumbel-Hougaard Copula 176 10.3.


3 Frank Copula 177 10.4 Estimation of Dependence 180 10.5 Simulation Studies 181 10.6 Case Study with R Codes 184 11 Conclusions and Future Directions 187 11.1 Brief Overview 187 11.2 Concluding Remarks 187 11.2.1 Large Sample Sizes for Flexible Models 187 11.


2.2 Accurate Estimation 188 11.2.3 Good Designs Before Data Analysis 188 11.3 Future Directions 189 11.3.1 Weibull Lifetime Distribution with Threshold Parameter 189 11.3.


2 Frailty Models 189 11.3.3 Optimal Design of SSALTs with Multiple Stress Levels 189 11.3.4 Comparison of CSALTs and SSALTs 190 Appendix A Derivation of Hi ( a, b ) 191 Appendix B Observed Information Matrix 193 Appendix C Non-Identifiable Parameters for SSALTs Under Weibull Distribution 197 Appendix D Optimal Design Under Weibull Distributions with Fixed 1 199 Appendix E Conditional Expectations for Competing Risks Model Under Exponential Distribution 201 Appendix F Kendall''s Tau for Frank Copula 205 Bibliography 207 Author Index 217 Subject Index 221.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...