Preface xxi About the Authors xxiii Part I Design and Analysis 1 Flexible Pipes and Limit-States Design 3 1.1 I ntroduction 3 1.2 Applications of Flexible Pipe 3 1.2.1 Metal-Based Flexible Pipes 5 1.2.2 Composite-Based Flexible Pipes 7 1.2.
3 D esign Codes and Specifications 10 1.3 Comparison between Flexible Pipes and Rigid Pipes 12 1.3.1 Unbonded Flexible Riser vs. Rigid Steel Riser 12 1.3.2 Flexible Jumper vs. Rigid Steel Jumper 12 1.
3.3 Flexible Composite Pipe vs. Rigid Pipe 13 1.3.3.1 Material Costs 14 1.3.3.
2 I nstallation Costs 14 1.3.3.3 Operational Costs 15 1.3.3.4 Comparison Example 15 1.4 Failure Mode and Design Criteria 15 1.
4.1 Unbonded Flexible Pipe 15 1.4.1.1 Failure Modes 15 1.4.1.2 D esign Criteria 17 1.
4.2 Flexible Composite Pipe 20 1.4.2.1 Failure Modes 20 1.4.2.2 D esign Criteria 20 1.
5 L imit State Design 24 1.5.1 L imit States 24 1.5.2 Reliability-Based Methods 25 References 26 2 Materials and Aging 29 2.1 I ntroduction 29 2.1.1 Unbonded Flexible Pipes 30 2.
1.2 Flexible Composite Pipes 34 vi Contents 2.2 Metallic Material 35 2.2.1 Stainless Steel 35 2.2.2 Carbon Steel 36 2.3 Polymer Material 36 2.
3.1 Annulus 36 2.3.2 Chemical Resistance 39 2.3.3 Permeation and Permeation Control Systems 41 2.3.3.
1 Theory of Gas Permeation 41 2.3.3.2 Permeation Calculation 42 2.3.4 Anti H 2 S Layer 44 2.4 Aging 45 2.4.
1 N onmetallic Material 46 2.4.2 Metallic Material 48 References 49 3 Ancillary Equipment and End Fitting Design 51 3.1 I ntroduction 51 3.1.1 D esign Criteria 51 3.2 Bend Stiffeners and Bellmouths 53 3.2.
1 I ntroduction 53 3.2.2 D esign Criteria and Failure Modes 55 3.2.3 D esign Considerations 56 3.2.4 Bellmouths 57 3.3 Bend Restrictor 58 3.
4 Buoyancy Modules 59 3.5 Cathodic Protection 60 3.6 Annulus Venting System 61 3.7 E nd Fittings 63 3.7.1 Unbonded Flexible Pipes 64 3.7.1.
1 D esign Criteria 64 3.7.1.2 Metallic Materials 66 3.7.1.3 E nd Fittings by Different Manufacturers 66 3.7.
2 Flexible Composite Pipes 68 3.7.2.1 D esign Criteria 70 3.7.2.2 Materials 70 3.7.
2.3 E nd Fitting Types 71 3.7.2.4 I nstallation 72 References 74 4 Reliability-Based Design Factors 75 4.1 Introduction 75 4.2 Failure Probability 76 4.2.
1 L imit State and Failure Mode 76 4.2.2 Failure Probability 76 4.3 Safety Factor Based on Reliability 77 4.3.1 Uncertainties of Resistance and Load Effect 78 4.3.2 L RFD Formulation 79 4.
3.3 D esign Process 79 Contents vii 4.4 D esign Example 82 4.4.1 L imit State Function 83 4.4.1.1 Resistance Model for Inner Pressure Load 83 4.
4.1.2 L imit State Function 83 4.4.2 Probability Model of Resistance 83 4.4.2.1 Probability Distribution of Resistance Parameters 83 4.
4.2.2 Probability Model of Resistance 84 4.4.3 Probability Model of Load Effect 85 4.4.4 Target Reliability 85 4.4.
5 Safety Factor Design Results 85 References 87 Part II Unbonded Flexible Pipes 5 Unbonded Flexible Pipe Design 91 5.1 I ntroduction 91 5.2 Applications of Flexible Pipe 92 5.2.1 Flexible Risers 92 5.2.2 Flexible Flowlines 94 5.2.
3 L oading and Offloading Hoses 94 5.2.4 Jumper Lines 96 5.2.5 D rilling Risers 97 5.3 Flexible Pipe System and Components 97 5.3.1 I nterlocked Steel Carcass 98 5.
3.2 I nternal Polymer Sheath 99 5.3.3 Armor Layers 99 5.3.3.1 Pressure Armor 99 5.3.
3.2 Tensile Armor 100 5.3.3.3 Composite Armor 100 5.3.4 E xternal Polymer Sheath 102 5.3.
5 Other Layers and Configurations 102 5.3.6 Main Ancillaries 103 5.3.6.1 E nd Fittings 103 5.3.6.
2 Bend Stiffener and Bellmouths 104 5.3.6.3 Bend Restrictor 105 5.3.6.4 Buoyancy Modules 106 5.3.
6.5 Annulus Venting System 106 References 106 6 Design and Analyses of Unbonded Flexible Pipe 109 6.1 I ntroduction 109 6.2 Flexible Pipe Guidelines 110 6.2.1 API Specification 17K 110 6.2.2 API Specification 17J 111 6.
2.2.1 Safety Against Collapse 112 6.2.2.2 D esign Criteria 112 6.2.3 API RP 17B 112 viii Contents 6.
3 Material and Mechanical Properties 113 6.3.1 Properties of Sealing Components 114 6.3.1.1 Polymer 114 6.3.1.
2 Steel 114 6.3.1.3 Fibres 115 6.3.2 Properties of Armor Components 115 6.3.2.
1 Submerged Weight 116 6.3.2.2 Bending Stiffness and Curvature Radius 116 6.3.2.3 Axial Stiffness and Tension Capacity 116 6.3.
2.4 Torque Stiffness and Torque Capacity 117 6.4 Analytical Solutions in Flexible Pipe Design 117 6.4.1 Overview 117 6.4.2 Analytical Modeling of Flexible Pipes 117 6.4.
3 Analytical Method of Unbonded Flexible Pipes 118 6.4.4 Axis-Symmetric Behavior 120 6.4.4.1 Kinematic Restraint 120 6.4.4.
2 Governing Equations 121 6.4.5 Bending Behavior 122 6.5 FE Analysis of Unbonded Flexible Pipe 123 6.5.1 Static Analysis 123 6.5.2 Fatigue Analysis 124 References 126 7 Unbonded Flexible Pipe Under Internal Pressure 129 7.
1 I ntroduction 129 7.2 Analytical Solution 130 7.2.1 Polymeric Layer 131 7.2.2 Helically Wound Steel Layer 132 7.2.3 Assembly of Layers 134 7.
3 FE Analysis 134 7.4 Results and Discussion 137 7.4.1 General 137 7.4.2 Axial Tension and End Displacement 138 7.4.3 Hoop Stress 138 7.
4.4 Axial Stress 141 7.4.4.1 Axial Stress of Model A and Model B 141 7.4.4.2 Axial Stresses of Model C and Model D_141 7.
4.5 Comparison of Mises Stress 144 7.5 Conclusions 145 References 146 8 Unbonded Flexible Pipe Under External Pressure 149 8.1 I ntroduction 149 8.2 Finite Element Analysis 151 8.2.1 Simplification 152 8.2.
2 Modeling Description 152 8.2.3 Models with Different Stiffness Ratios 153 8.2.4 Models with Different D/t Ratios 154 Contents ix 8.3 FEM Results and Discussion 155 8.3.1 Prediction of Confined External Pressure 155 8.
3.1.1 Same D/t Ratio with Different Stiffness Ratios 155 8.3.1.2 D ifferent D/t Ratios with Different Stiffness Ratios 157 8.3.2 Confined Post-Buckling Behavior 158 8.
4 Analytical Solution 158 8.5 Test Study 161 8.5.1 Material Characteristics 162 8.5.2 Confined Collapse Tests 163 8.5.3 Test Results 165 8.
6 Comparison of Three Methods 167 8.7 Conclusions 168 References 169 9 Unbonded Flexible Pipe Under Tension 171 9.1 I ntroduction 171 9.2 Tension Load 172 9.2.1 Helical Layer 172 9.2.2 Tube Layer 175 9.
2.3 Principle of Virtual Work 175 9.3 Results and Discussion 177 9.4 Parametric Study 180 9.4.1 L ay Angle 181 9.4.2 D iameter-to-Thickness 183 9.
5 Conclusions 184 References 185 10 Unbonded Flexible Pipe Under Bending 187 10.1 I ntroduction 187 10.2 Helical Layer within No-Slip Range 188 10.2.1 Geometry of Helical Layer 188 10.2.2 Bending Stiffness of Helical Layer 191 10.3 Helical Layer within Slip Range 192 10.
3.1 Critical Curvature 192 10.3.2 Axial Force in Helical Wire within Slip Range 194 10.3.3 Axial Force in Helical Wire within No-Slip Range 194 10.3.4 Bending Stiffness of Helical Layer 196 References 197 11 Unbonded Flexible Pipe Under Tension and Internal Pressure 199 11.
1 I ntroduction 199 11.2 Analytical Solution 200 11.3 FE Analysis 200 11.3.1 Case 1: Tension Only 201 11.3.2 Case 2: Internal Pressure Only 202 11.3.
3 Case 3: Combined Tension and Internal Pressure 202 x Contents 11.4 Results and Discussion 202 11.5 Conclusions 208 References 208 12 Cross-Sectional Design and Case Study for Unbonded Flexible Pipes 211 12.1 I ntroduction 211 12.2 Cross-Sectional Design 212 12.2.1 General Design Requirements 212 12.2.
2 Manufacturing Configuration and Material Qualification 213 12.2.2.1 Carcass 213 12.2.2.2 Pressure Sheath 213 12.2.
2.3 Pressure Armor 213 12.2.2.4 Tensile Armor 214 12.2.2.5 Tape 214 12.
2.2.6 Shield 214 12.3 Case Study 214 12.3.1 D esign Procedure 214 12.3.2 D esign Requirement 214 12.
3.3 D esign Method 215 12.3.3.1 Strength Design for Axisymmetric Loads 215 12.3.3.2 Collapse Resistance Design 216 12.
3.4 D esign Results 216 12.3.5 L oad Analysis 217 12.3.6 FE Analysis 218 12.4 Conclusions 219 References 220 13 Fatigue Analysis of Unbonded Flexible Pipe 223 13.1 I ntroduction 223 13.
2 Theoretical Approach 224 13.2.1 Assumptions 224 13.2.2 E nvironment Conditions 224 13.2.3 Transposition of Forces and Bending Moments 225 13.2.
4 Fatigue Design Criteria 225 13.2.4.1 S-N Curves 225 13.2.4.2 Miner''s rule 225 13.3 Case Study 226 13.
3.1 I ntroduction 226 13.3.2 Base Case 227 13.4 Conclusions 230 References 230 Contents xi Part II.