This book explains the theory and methods by which gas molecules can be polarized by light, a subject of considerable importance for what it tells us about the electronic structure of molecules and properties of chemical reactions. Starting with a brief review of molecular angular momentum, the text goes on to consider resonant absorption, fluorescence, photodissociation and photoionization, as well as collisions and static fields. A variety of macroscopic effects are considered, among them angular distribution and the polarization of emitted light, ground state depopulation, laser-induced dichroism, the effect of collisions and external magnetic and electric field effects. Most examples in the book are for diatomic molecules, but symmetric-top polyatomic molecules are also included. The book concludes with a short appendix of essential formulae, tables for vector calculus, spherical functions, Wigner rotation matrices, Clebsch-Gordan coefficients, and methods for expansion over irreducible tensors.
Optical Polarization of Molecules